Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Crit Care Med ; 50(2): 212-223, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1735675

ABSTRACT

OBJECTIVES: Body temperature trajectories of infected patients are associated with specific immune profiles and survival. We determined the association between temperature trajectories and distinct manifestations of coronavirus disease 2019. DESIGN: Retrospective observational study. SETTING: Four hospitals within an academic healthcare system from March 2020 to February 2021. PATIENTS: All adult patients hospitalized with coronavirus disease 2019. INTERVENTIONS: Using a validated group-based trajectory model, we classified patients into four previously defined temperature trajectory subphenotypes using oral temperature measurements from the first 72 hours of hospitalization. Clinical characteristics, biomarkers, and outcomes were compared between subphenotypes. MEASUREMENTS AND MAIN RESULTS: The 5,903 hospitalized coronavirus disease 2019 patients were classified into four subphenotypes: hyperthermic slow resolvers (n = 1,452, 25%), hyperthermic fast resolvers (1,469, 25%), normothermics (2,126, 36%), and hypothermics (856, 15%). Hypothermics had abnormal coagulation markers, with the highest d-dimer and fibrin monomers (p < 0.001) and the highest prevalence of cerebrovascular accidents (10%, p = 0.001). The prevalence of venous thromboembolism was significantly different between subphenotypes (p = 0.005), with the highest rate in hypothermics (8.5%) and lowest in hyperthermic slow resolvers (5.1%). Hyperthermic slow resolvers had abnormal inflammatory markers, with the highest C-reactive protein, ferritin, and interleukin-6 (p < 0.001). Hyperthermic slow resolvers had increased odds of mechanical ventilation, vasopressors, and 30-day inpatient mortality (odds ratio, 1.58; 95% CI, 1.13-2.19) compared with hyperthermic fast resolvers. Over the course of the pandemic, we observed a drastic decrease in the prevalence of hyperthermic slow resolvers, from representing 53% of admissions in March 2020 to less than 15% by 2021. We found that dexamethasone use was associated with significant reduction in probability of hyperthermic slow resolvers membership (27% reduction; 95% CI, 23-31%; p < 0.001). CONCLUSIONS: Hypothermics had abnormal coagulation markers, suggesting a hypercoagulable subphenotype. Hyperthermic slow resolvers had elevated inflammatory markers and the highest odds of mortality, suggesting a hyperinflammatory subphenotype. Future work should investigate whether temperature subphenotypes benefit from targeted antithrombotic and anti-inflammatory strategies.


Subject(s)
Body Temperature , COVID-19/pathology , Hyperthermia/pathology , Hypothermia/pathology , Phenotype , Academic Medical Centers , Aged , Anti-Inflammatory Agents/therapeutic use , Biomarkers/blood , Blood Coagulation , Cohort Studies , Dexamethasone/therapeutic use , Female , Humans , Inflammation , Male , Middle Aged , Organ Dysfunction Scores , Retrospective Studies , SARS-CoV-2
2.
BMJ Open ; 10(11): e040162, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-1166469

ABSTRACT

INTRODUCTION: In breast cancer, local tumour control is thought to be optimised by administering higher local levels of cytotoxic chemotherapy, in particular doxorubicin. However, systemic administration of higher dosages of doxorubicin is hampered by its toxic side effects. In this study, we aim to increase doxorubicin deposition in the primary breast tumour without changing systemic doxorubicin concentration and thus without interfering with systemic efficacy and toxicity. This is to be achieved by combining Lyso-Thermosensitive Liposomal Doxorubicin (LTLD, ThermoDox, Celsion Corporation, Lawrenceville, NJ, USA) with mild local hyperthermia, induced by Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU). When heated above 39.5°C, LTLD releases a high concentration of doxorubicin intravascularly within seconds. In the absence of hyperthermia, LTLD leads to a similar biodistribution and antitumour efficacy compared with conventional doxorubicin. METHODS AND ANALYSIS: This is a single-arm phase I study in 12 chemotherapy-naïve patients with de novo stage IV HER2-negative breast cancer. Previous endocrine treatment is allowed. Study treatment consists of up to six cycles of LTLD at 21-day intervals, administered during MR-HIFU-induced hyperthermia to the primary tumour. We will aim for 60 min of hyperthermia at 40°C-42°C using a dedicated MR-HIFU breast system (Profound Medical, Mississauga, Canada). Afterwards, intravenous cyclophosphamide will be administered. Primary endpoints are safety, tolerability and feasibility. The secondary endpoint is efficacy, assessed by radiological response.This approach could lead to optimal loco-regional control with less extensive or even no surgery, in de novo stage IV patients and in stage II/III patients allocated to receive neoadjuvant chemotherapy. ETHICS AND DISSEMINATION: This study has obtained ethical approval by the Medical Research Ethics Committee Utrecht (Protocol NL67422.041.18, METC number 18-702). Informed consent will be obtained from all patients before study participation. Results will be published in an academic peer-reviewed journal. TRIAL REGISTRATION NUMBERS: NCT03749850, EudraCT 2015-005582-23.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , COVID-19 , Canada , Cyclophosphamide , Doxorubicin/analogs & derivatives , Feasibility Studies , Humans , Hyperthermia , Magnetic Resonance Spectroscopy , Polyethylene Glycols , SARS-CoV-2 , Tissue Distribution
3.
Int J Hyperthermia ; 38(1): 202-212, 2021.
Article in English | MEDLINE | ID: covidwho-1120965

ABSTRACT

Increased transmissibility of the pandemic severe acute respiratory coronavirus 2 (SARS-CoV-2) has been noted to occur at lower ambient temperatures. This is seemingly related to a better replication of most respiratory viruses, including SARS-CoV-2, at lower-than-core body temperatures (i.e., 33 °C vs 37 °C). Also, intrinsic characteristics of SARS-CoV-2 make it a heat-susceptible pathogen. Thermotherapy has successfully been used to combat viral infections in plants which could otherwise result in great economic losses; 90% of viruses causing infections in plants are positive-sense single-stranded ribonucleic acid (+ssRNA) viruses, a characteristic shared by SARS-CoV-2. Thus, it is possible to envision the use of heat-based interventions (thermotherapy or mild-temperature hyperthermia) in patients with COVID-19 for which moderate cycles (every 8-12 h) of mild-temperature hyperthermia (1-2 h) have been proposed. However, there are potential safety and mechanistic concerns which could limit the use of thermotherapy only to patients with mild-to-moderate COVID-19 to prevent disease progression rather than to treat patients who have already progressed to severe-to-critical COVID-19. Here, we review the characteristics of SARS-CoV-2 which make it a heat-susceptible virus, potential host mechanisms which could be enhanced at higher temperatures to aid viral clearance, and how thermotherapy could be investigated as a modality of treatment in patients with COVID-19 while taking into consideration potential risks.


Subject(s)
COVID-19/therapy , Hyperthermia, Induced , Animals , Body Temperature , COVID-19/virology , Genes, Viral , Humans , Hyperthermia/immunology , Plants/virology , RNA Interference , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL